Wiring Microbes to Conduct and Produce Electricity Faster
06.09.2013
Practical applications of these systems include current generation, wastewater treatment and biochemical and biofuel production. The microbial-electrode interface is a sum of complex physical-chemical and biological interactions permitting microbes to exchange electrons with solid electrodes to produce bioelectrochemical systems. In these systems, the microbes compete and self-select electrode materials for electron exchange capabilities. However, to date this selection is not well understood yet electricity or chemicals can be produced using various substrates, including wastewater or waste gases, depending upon operational settings, says Amit Kumar, who worked under the leadership of Dónal Leech at the National University of Ireland Galway in Ireland. The Biomolecular Electronics Research Laboratory has been working on probing conditions for selection of electrodes by microbes for several years, and we have recently adopted an approach to tailor the chemistry of electrode surfaces which will help us better understand the selection mechanism says Amit Kumar and Dónal Leech. Our first result shows that surfaces modified with nitrogen-containing amines result in higher and more rapid production of current, compared to those without this modification, when placed in microbial cultures. Next on our researcher agenda is to elucidate the selection mechanism using a range of surface modifications and microbial cultures.
Original publication:
Amit Kumar, Peter Ó Conghaile, Krishna Katuri, Piet Lens, Dónal Leech. Arylamine functionalization of carbon anodes for improved microbial electrocatalysis. RSC Advances, 2013; DOI: 10.1039/c3ra42953a Source: ScienceDaily/EurekAlert!