Aktuelles
Treibstoff und raffinerte Materialkreisläufe dank Biotemplating – Mini-Kraftwerke aus beschichteten Blaualgen
27.08.2020

Vollendete Architektur
Für einen besonders effizienten und gleichzeitig nachhaltigen Prozess wurde das Verfahren des «Biotemplating» genutzt, bei dem eine von der Natur vorgegebene Architektur als Schablone dient, um neue Oberflächenbeschichtungen anzubringen. Die Blaualge Spirulina, deren Form an einen winzigen Tauchsieder erinnert, eignete sich dafür besonders, da ihre kompakte Wendel-Struktur zur effizienten Nutzung des Sonnenlichts beiträgt.Die Forschenden beschichteten die rund vier Mikrometer dünnen geschraubten Schnüre der konservierten Spirulina-Einzeller zunächst mit einer feinen Hülle aus Nickel. Einer Zwiebelschale gleich folgten darauf zarte Schichten aus Zinkoxid und Zinksulfid-Nanopartikeln. «Während die Blaualgen als Strukturgeber fungieren, sorgt die magnetische Nickelbeschichtung für eine einfache Möglichkeit, die kleinen Alleskönner wieder zurückzugewinnen», sagt Laetitia Philippe. Die darüber aufgetragene Beschichtung mit Zinkverbindungen weist eine beeindruckende photokatalytische Aktivität auf. Einerseits führt die Kombination zweier Zinkverbindungen zu einer längeren Leistungsfähigkeit der Photokatalyse-Reaktion. Zum anderen kann so aber auch ein grösserer Wellenlängenbereich des Sonnenlichtspektrums genutzt werden. «Mit Zinkoxid lässt sich lediglich die UV-Strahlung des Sonnenlichts für Reinigungsprozesse nutzen», erklärt Empa-Forscher Albert Serrá. «Mit der photokatalytischen Aktivität der beschichteten Algen sollte ein nachhaltiger, einfacher und günstiger Prozess für die Wasseraufbereitung genutzt werden können», erklärt Laetitia Philippe. Seit 2015 gehört die Verfügbarkeit und nachhaltige Bewirtschaftung von Wasser für alle Menschen zur Globalen Nachhaltigkeitsagenda der Vereinten Nationen (UN). Entsprechend dieser Zielvorgabe suchte die Forscherin mit ihrem Team nach einer Technologie, die sauberes Wasser weltweit und auf der Grundlage von bestehenden Anlagen produzieren könnte. Hierbei sollte das Wasser vor allem von Mikroplastik und persistenten organischen Schadstoffen befreit werden, die herkömmliche Aufbereitungssysteme nicht entfernen. Die Forschenden entwickelten daher einen Prozess auf der Basis von Photokatalyse mittels Zinkoxid und Zinksulfid, einer chemischen Reaktion, die unter Lichteinwirkung Schadstoffe oxidiert und neutralisiert. Die Kombination mit Zinksulfid-Nanopartikeln ermögliche es nun aber auch Bereiche des sichtbaren Lichts als Energiequelle anzuzapfen.