AdvaPro-Netzwerk-Vorstellung Vereinigte Werkstätten für Pflanzenöltechnologie

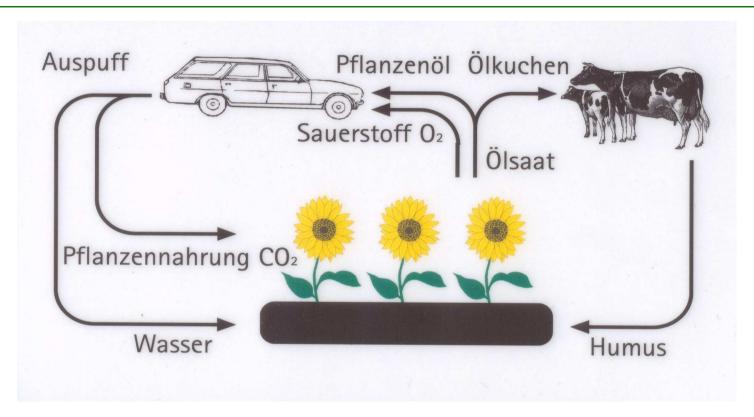
- 1. Einsatz pflanzlicher Öle für Mobilität, Landwirtschaft, und Stromerzeugung in 100 % Erneuerbaren-Energie-Hybridsystemen
- 2. Entwicklung pflanzenöltauglicher Motoren
- 3. Entwicklungskonzepte zum nachhaltigen Anbau und qualitativer Herstellung von Pflanzenölen und Eiweiß, vornehmlich in dezentralen Ölmühlen.
- 4. VWP verbindet die Herstellung von Pflanzenölkraftstoffen mit der Ressourcenbeschaffung von Proteinen zur menschlichen und tierischen Ernährung zum gemeinsamen Aufbau von Wertschöpfungsketten für Energie und Eiweiß.
- 5. AdvaPro Aufgabenstellung: Essbare Jatropha Curcas-Züchtung als potenzielle Protein-Quelle semi-arider Gebiete, im Gegensatz zu Soja aus dem Regenwald.
- 6. VWP ist für essbare Jatropha Saat auf der Suche nach Wertschöpfungsketten für neues Speiseöl und neuartiges Protein

Mobiler Sektor: Traktoren für reines Pflanzenöl

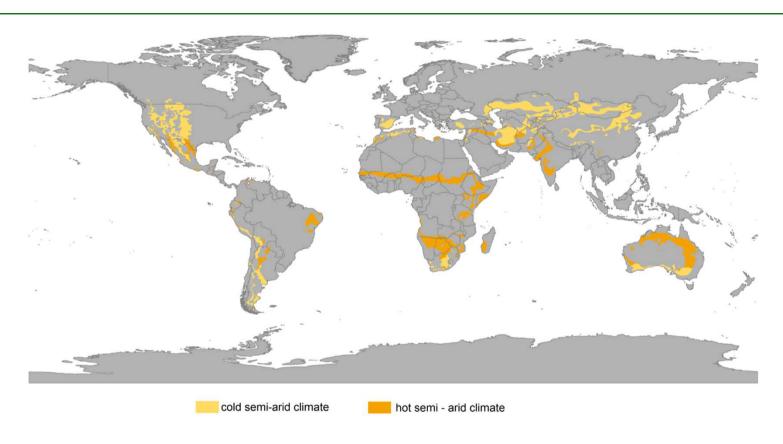
VWP-Deutz vor den Uffizien

John Deere/VWP Flex Fuel Traktor Welt Klima Konferenz in Krakau

Stationärer Sektor: 100% Solare Stromversorgungskonzepte durch Synthese von Photovoltaik und Photosynthese



Monte-Rosa-Hütte (Zermatt 2883m) und Galapagos Insel (Isabela 5m) mit Rapsöl/Jatrophaöl Generatoren, Photovoltaik und Batteriesystem


Geschlossener CO2-Kreislauf und Mineralstoffkreislauf von Ölpflanzen Koppelproduktion von Energie und Eiweiß

Erste Motorversuche mit 00-Raps durch Elsbett und VWP in 1988 und 1995 Zwischen Reh- und Kuhsterben und Deutschlands heute erfolgreichster Proteinquelle

Trocken-, Kälte- und Hitze tolerante Öl- und Proteinpflanzen für landwirtschaftlich ungenutzte Semi-Aride Flächen

Ram M. et al. 2019. GLOBAL ENERGY SYSTEM BASED ON 100% RENEWABLE ENERGY Power, Heat, Transport and Desalination Sectors.

Camelina Sativa und Erbse im ökologischen Mischfruchtanbau von Nahrungsmittel, Energie und Eiweiß

Ökologische Eiweißquelle für Öko-Bauern. Wegen "Giftigkeit" benötigte VWP 10 Jahre für Zulassung gemäß Futtermittelverordnung der Europäischen Union.

Jatropha Saat, Öl und Eiweißkuchen-Dezentrale Ölmühle



- Hoher Curcin-Gehalt: Kein Teller-Tank-Konflikt, nicht essbar, keine Nahrungsmittelflächen, kein ILUC, trocken- und Hitzetolerant.
- Konzept zur Bekämpfung von Klimaveränderung, Wüstenbildung, Armut, Hunger und Migration.

Ertragspotential von gezüchtetem Saatgut Jatropha 2.0 im Vergleich zu Wildpflanzen aus der Vergangenheit.

VWP-AdvaPro-Machbarkeitsstudie

Essbare Jatropha Curcas: Eine neue Protein Quelle aus semi-ariden Gebieten: Potenzialanalyse der Wertschöpfungsketten von Eiweiß und Öl.

"Jatropha CO2 Recycling Concept for Fuel, Food, Feed and Fertilizer"

CHU	IA
Nährwer	
je 100 g geröstete C	
Energie	2739 kJ / 663 kca
Fett	59.2 գ
davon gesättigte Fettsäuren	11 (
Kohlenhydrate	2.3 g
davon Zucker	1.8
Ballaststoffe	8 9
Eiweiß	26.1 g
Salz	< 0.01
Mineralstoffe	4.6 g
High Energy – I	Low Carb
High Energy – I	Low Carb

D-:::	6 L		. 0/0/50	
Prü	rber	ICHT	: 240658	00-

Prüfmuster	: Jatrophaöl	
Aussehen	: Farbe gelblich, leicht trüb, frei von sicht!	baren Verunreinigungen und Wa
Gebinde	: Glas - Flasche 1000 ml	
ASG-ID	: 2406588_001	Siegel-Nr.: -

Prüfparameter	Prüfmethode		Prüfergebnis	Einheit
lodzahl	DIN EN 14111		107	g lod/100g
Säurezahl	DIN EN 14104		5,01	mg KOH/g
Oxidationsstabilität	DIN EN 14112		15,0	h
Wassergehalt	DIN EN ISO 12937		698	mg/kg
C8:0 / Caprylsäure		(a)	<0,1	% (m/m)
C10:0 / Caprinsäure			<0,1	% [m/m]
C12:0 / Laurinsäure			<0,1	% (m/m)
C14:0 / Myristinsäure			0,1	% (m/m)
C16:0 / Palmitinsäure			12,8	% (m/m)
C16:1 / Palmitoleinsäure			0,9	% [m/m]
C18:0 / Stearinsäure			5,9	% (m/m)
C18:1 / Ölsäure	DIN EN ISO 5508		39,7	% (m/m)
C18:2 / Linolsäure	DIN EN 150 5508		39,2	% [m/m]
C18:3 / Linolensäure			0,5	% [m/m]
C20:0 / Arachinsäure			0,3	% (m/m)
C20:1 / Gadoleinsäure			0,1	% [m/m]
C22:0 / Behensäure			0,1	% (m/m)
C22:1 / Erucasäure			0,1	% (m/m)
C24:0 / Lignocerinsäure			0,1	% (m/m)
C24:1 / Nervonsäure			0,1	% (m/m)
Heizwert (Hu,p)	DIN 51900-2 mod.	(a)	37068	J/g

Vielen Dank für die Aufmerksamkeit

