Discovery and Development of Novel Enzyme Biotransformations

(1) Introduction to EMBL

- (2) Transform-MinER
 - discovery of novel valuable biotransformations
- (3) PocketAnalyser
 - modification of enzyme pocket towards novel biotransformation

We welcome enquiries regarding experimental collaborations to validate and develop the opportunities identified

Dr. Jonathan Tyzack Thornton Group www.ebi.ac.uk

EMBL: Europe's Centre of Excellence in Life Sciences

- Founded in 1974 as an intergovernmental organization to promote molecular life sciences in Europe
- 6 EMBL sites over 1700 people and more than 80 nationalities
- Currently 26 member states and 2 associate member states (Australia and Argentina)

EMBL: principles and missions

EMBL	Scientific excellence	Collaboration	Staff turnover	
	Internationality and diversity	Scientific freedom		A COSS
		Cutting-edge infrastructure	Young talent and early independence	

Basic research

Services

Advanced training Technology development & transfer Integration of life science research

EMBL: principles and missions

1) Transform-MinER overview

Transform-MinER performs data mining of enzyme transformations to propose novel enzymatic transformations with similarity to known transformations

Molecule Search - propose enzyme transformations for a submitted molecule

Path Search - link a substrate and product molecule via multiple enzyme transformations

A restricted version of Transform-MinER is publicly available (analysis of single query substrates, no high-throughput function): <u>https://www.ebi.ac.uk/thornton-srv/transform-miner/</u>

2) Novel high margin opportunities by virtual HTS

Transform-MinER can run high-throughput, in-parallel on a cluster

- Expansion of substrate source and product space
- To prioritise high similarity hits for value, identification of high margin opportunities across diverse EC areas *(examples in the next slide)*

3) Novel high margin opportunity examples

Examples of novel biotransformations with the highest margin:

Ref	EC subclass	Substrate Value	Product Value	Factor	Margin %
		Ş	Ş	X	%
1	1.1	28	1056	38	3768
2	1.14	28	1312	47	5204
3	2.1	26	1443	56	6105
4	2.3	16	855	52	6148
5	2.6	15	484	32	2363
6	3.1	6	673	112	12863
7	3.5	18	2369	134	11470
8	4.1	61	3056	50	6529

- Valuations for substrate and product from same supplier and quantity
- Margin calculated on a per mole basis using valuations for all substrates and products

4) Identification of novel reaction paths

Transform-MinER is capable to find novel transformation paths

Green: Substrate Red: Product

Path Search:

- Links a query substrate with a query product over a number of intermediate enzymatic reactions
- Identifies novel paths of enzymatic reactions

5) Pocket Analyser

Pocket analysis:

- Identify potential substrate/protein clashes
- Propose residues for mutation
- Requirements:
 - Protein structure (or homology modelling)
 - Bound native substrate in a catalytically relevant pose (or from docking)

Prototype available for testing.

Fig1: Pocket Analyser Example.

Potential clashes identified between ortho substituents and isoleucine (magenta). Mutation to alanine predicted to relieve steric clashes.

6) Bespoke versions for partners

Transform-MinER has been applied e.g. in the agrochemical arena to explore biosynthetic space.

Benefits:

- Identification of novel, valuable transformations that increase substrate and product space
- Development of enzymes with related and commercially lucrative activity
- Considerable time savings by high-throughput computational analysis (not available on public version)
- Possibility to test activity at EMBL Protein Expression and Purification Core Facility (PEP core)
- Optional use of EMBL Pocket Analyser tool to predict enzyme mutations

7) Work flow for bespoke versions

Transform-MinER^[1]

performs high-throughput virtual screening to propose novel valuable enzymatic transformations with similarity to confirmed transformations

8) Summary

Transform-MinER molecule search:

• guide enzyme development into lucrative areas

Transform-MinER path search

identify novel paths of enzyme reactions

Pocket Analyser

• propose clash-relieving mutations to optimize novel substrate binding

Partnerships

- To add valuable new functionality for commercial enzymes
- To develop mutant enzymes with novel activity

9) Further reading and contact

Paper:

[1] Exploring Chemical Biosynthetic Design Space with Transform-MinER, *ACS Synth Biol*, 2019, 8, 11, 2494-2506

[2] Transform-MinER: transforming molecules in enzyme reactions, *Bioinformatics*, 34(20), 2018, 3557-3599

Contact:

- Dr Jonathan Tyzack tyzack@ebi.ac.uk
- Dr Cornelia Brosi brosi@embl-em.de

